
On the Reversibility of Parallel Insertion, and

Its Relation to Comma Codes�

Bo Cui, Lila Kari, and Shinnosuke Seki

Department of Computer Science, University of Western Ontario,
London, Ontario, Canada, N6A 5B7
{bcui2,lila,sseki}@csd.uwo.ca

Abstract. This paper studies conditions under which the operation of
parallel insertion can be reversed by parallel deletion, i.e., when does the
equality (L1 ⇐ L2) ⇒ L2 = L1 hold for languages L1 and L2. We obtain
a complete characterization of the solutions in the special case when both
languages involved are singleton words. We also define comma codes, a
family of codes with the property that, if L2 is a comma code, then the
above equation holds for any language L1 ⊆ Σ∗. Lastly, we generalize the
notion of comma codes to that of comma intercodes of index m. Besides
several properties, we prove that the families of comma intercodes of
index m form an infinite proper inclusion hierarchy, the first element
which is a subset of the family of infix codes, and the last element of
which is a subset of the family of bifix codes.

1 Introduction

In combinatorics on words and formal language theory, operations play an essen-
tial role in understanding the mechanisms of generating words and languages.
Several generalizations of catenation and quotient, such as shuffle, shuffle on
trajectories, [14], sequential and parallel insertion and deletion, [5], distributed
catenation, [10], mix operation, [11], deletion on trajectories, [2], and hairpin
completion and reduction, [13], have been studied in the literature. Follow-up
studies investigated properties of languages produced by sequential and paral-
lel insertion and deletion in [3,6,7,8,9]. One particular topic of interest was the
reversibility of some of these operations, originally motivated by cryptography
applications: If one uses the insertion of a key as one component of a cryptosys-
tem to encrypt a plain-text message, and one step of decryption is accomplished
by the deletion of the key, what are the language properties that would ensure
that the plain-text can be uniquely deciphered? Motivated by this potential ap-
plication, the determinism and inversibility of insertion and deletion operations
on words were studied in, e.g., [6].

The question can be asked in a more general framework wherein the operations
involved are the parallel insertion and deletion. This paper represents a first step
� This research was supported by Discovery Grant of the Natural Science and Engi-

neering Research Council of Canada, and Canada Research Chair Award to L.K.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 204–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Reversibility of Parallel Insertion 205

towards an answer. More precisely, similar to sequential insertion and deletion,
if we parallel-delete a word v from the language obtained by parallel-inserting v
into u, we will not always obtain u. Thus, the question we ask is “Under what
conditions, after parallel-inserting v into u, followed by the parallel deletion of
v from the result, do we obtain exactly u?”.

In Sect. 3, after the investigation of various properties of parallel insertion and
deletion, we give a complete answer to this question for the singleton case, and
furthermore we generalize the question to languages. We show that, if L2 is a
comma code (formally introduced in Sect. 4), any language L1 can be recovered
after first parallel-inserting L2 into L1 and then parallel-deleting L2 from the
result.

The notion of codes was defined for applications in communication systems.
That is, if a message is encoded by using words from a code, then any arbitrary
catenation of words should be uniquely decodable into code-words. Various codes
with specific algebraic properties, such as prefix codes, infix codes, and comma-
free codes [1,16,17], have been defined and used for various purposes. In Sect. 4,
we define a family of codes, named comma codes, and show that this family is
a proper subfamily of that of infix codes. Also, we give a characterization of
comma codes, obtain some closure and algebraic properties, as well as compare
the comma code family with other families, such as that of comma-free codes
and that of solid codes.

Based on the similarity between the definition of comma codes and that of
comma-free codes, in Sect. 5, we generalize comma codes and introduce the
notion of comma intercodes. Similar to the notion of intercodes [16,17,18], the
families of comma intercodes of index m form a proper inclusion hierarchy within
the family of bifix codes. However, we show that any two families of intercodes
and comma intercodes are incomparable.

2 Preliminaries

An alphabet Σ is a nonempty finite set of letters. A word over Σ is a sequence
of letters in Σ. The length of a word w, denoted by |w|, is the number of letters
in this word. The empty word, denoted by λ, is the word of length 0, while a
unary word is a word of the form aj , j ≥ 1, a ∈ Σ. The set of all words over
Σ is denoted by Σ∗, and Σ+ = Σ∗ \ {λ} is the set of all nonempty words.
A language is a subset of Σ∗. A language with exactly one word is called a
singleton. In this paper, for a word w ∈ Σ∗, we often denote a singleton {w} as
w. A catenation of two languages L1, L2 ⊆ Σ∗, denoted by L1L2, is defined as
L1L2 = {uv | u ∈ L1, v ∈ L2}. As mentioned, if an operand is a singleton, say
L1 = {u} or L2 = {v}, then we write uL2 or L1v instead of {u}L2 or L1{v}.

A word x ∈ Σ∗ is called an infix (prefix, suffix) of a word u ∈ Σ+ if u = zxy
(u = xy, u = zx) for some words y, z ∈ Σ∗. In this definition, if z and y are
nonempty, then such an x is called a proper infix, prefix, or suffix of u. For a
word u ∈ Σ∗, the set of its infixes (prefixes, suffixes) is denoted by F(u) (resp.
Pref(u), Suff(u)). For a word u ∈ Σ∗, we denote the prefix (suffix) of length

206 B. Cui, L. Kari, and S. Seki

n ≥ 0 by prefn(u) (resp. suffn(u)). These notations can be naturally extended
to languages, e.g., Pref(L) is the set of prefixes of the words in L.

A nonempty word u ∈ Σ+ is said to be primitive if u = vn implies n = 1 and
u = v for any v ∈ Σ+. Any non-primitive word can be written as a power of a
unique primitive word [16], which is called the primitive root of the word.

It is well known that [16], if nonempty words x, y, z ∈ Σ+ satisfy xy = yz,
then there exist α, β ∈ Σ∗ such that αβ is primitive, x = (αβ)i, y = (αβ)jα,
and z = (βα)i for some i ≥ 1 and j ≥ 0.

A nonempty word u ∈ Σ+ is called bordered if there exists a nonempty word
which is both proper prefix and proper suffix of u. A bordered primitive word
is a primitive word which is bordered, and it can be written as xyx for some
x, y ∈ Σ+ [16].

Parallel insertion and deletion on words and languages are variants of well-
known (sequential) insertion and deletion, introduced in [5]. For two words u, v ∈
Σ∗, the parallel insertion of v into u results in a word va1va2 · · · anv, where u =
a1a2 · · · an for letters a1, . . . , an ∈ Σ. We denote this resulting word by u ⇐ v.
This operation can be generalized to languages as follows: for two languages
L1, L2 ⊆ Σ∗, the parallel insertion of L2 into L1 generates a language

L1 ⇐ L2 =
⋃

n ≥ 1, a1, . . . , an ∈ Σ s.t. a1a2 · · · an ∈ L1

L2a1L2a2 · · ·L2anL2.

Example 1. For L1 = {cd} and L2 = {a, b},
L1 ⇐ L2 = L2cL2dL2

= {acada, acadb, acbda, acbdb, bcada, bcadb, bcbda, bcbdb}.
In contrast, the parallel deletion of a language L2 from another language L1

results in a set of words which can be obtained by deleting elements of L2 from
an element of L1 in a “maximal parallel manner”. We denote the resulting set
by L1 ⇒ L2. For u ∈ L1, let

u ⇒ L2 =
{
u1u2 · · ·ukuk+1 | u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, u ∈ u1L2u2L2 · · ·L2uk+1

and F(ui) ∩ (L2 \ {λ}) = ∅ for all 1 ≤ i ≤ k + 1
}
.

By this definition, it is clear that if u does not contain any word in L2 as its
infix, then u ⇒ L2 = ∅. Then we define L1 ⇒ L2 =

⋃
u∈L1

(u ⇒ L2).

Example 2. Let L1 = {abababa, aababa, abaabaaba} and L2 = {aba}. Then

L1 ⇒ L2 = ({abababa} ⇒ L2) ∪ ({aababa} ⇒ L2) ∪ ({abaabaaba} ⇒ L2)
= {b, abba} ∪ {aba, aab} ∪ {λ} = {b, abba, aba, aab, λ}.

3 When Does (L1 ⇐ L2) ⇒ L2 Equal L1?

By definitions, parallel insertion and deletion are not inverse operations in the
sense that L1 may not equal to (L1 ⇐ L2) ⇒ L2. Thus, a question of interest is

On the Reversibility of Parallel Insertion 207

to find under what conditions does the equality (L1 ⇐ L2) ⇒ L2 = L1 hold. We
start by providing some properties of parallel insertions and deletions relevant
to this question.

The simplest case is when the operation is the parallel insertion and both
operands are singleton words. The next theorem will show that, unless w and u
are unary words over the same letter, w ⇐ u is primitive.

Lemma 1. Let u ∈ Σ+ and us ∈ Suff(u). If usau ∈ Pref(u2) for some a ∈ Σ,
then u is a power of a.

Proof. Due to the assumption, u = usau′
p = u′

pusa for some u′
p ∈ Σ∗. It well

known that, for two words u, v ∈ Σ+, if uv = vu, then they share their primitive
roots. Therefore, the primitive root of u is same as that of usa. Hence, if us is
empty, it is clear that u ∈ a+. Even, otherwise, since us ∈ Suff(u′

pusa), us is a
power of a. Thus, this lemma holds. ��
Theorem 1. Let u, w ∈ Σ+. Then w ⇐ u is not primitive if and only if w and
u are unary words over the same letter a ∈ Σ.

Proof. The if-direction is trivial. So we consider here the only-if direction under
the assumption that w ⇐ u is non-primitive. Then w ⇐ u overlaps with its
square in a nontrivial way. Let w = a1a2 . . . an for some n ≥ 1 and a1, . . . , an ∈
Σ. Also let w ⇐ u = vk for some v ∈ Σ+ and k ≥ 2. In the following, we prove
that in all possible cases v is a unary word, which trivially implies what we want.

Firstly we consider the case when there is an integer � such that ua1 · · ·ua� =
vi for some i ≥ 1, which further implies that ua1 · · ·ua� = an−�+1u · · ·anu. In
this case, we can always find such � in the range
n/2� ≤ �. For such �, this
equation implies that all of a1, . . . , an are the same, say a, and v is a power of
a. If |u| = 1, this is always the case so that all we have to consider is the case
|u| ≥ 2 under the assumption that such � cannot be found. Note that then we
cannot find an integer �′ ≥ 0 such that ua1 · · · a�′u is a power of v, either.

Under the assumption, one of the occurrences of u in w ⇐ u overlaps with
the factor u2 of (w ⇐ u)2 nontrivially (x �= λ and y �= λ in Fig. 1.) As shown
there, we have usamu ∈ Pref(u2) for some 1 ≤ m ≤ n. Lemma 1 implies that u
is a unary word over am longer than 1. Note that the overlap between w ⇐ u
and its square implies that for all 1 ≤ i ≤ n, ai = an because these characters
in w ⇐ u must be contained within some u in (w ⇐ u)2. ��
As mentioned before, (L1 ⇐ L2) ⇒ L2 = L1 is not always the case. Even if
we limit L1 and L2 to be singletons {w} and {u}, (w ⇐ u) ⇒ u can contain

an a1

am

x yus

u u u u

u u

Fig. 1. How uamu overlaps with uanu2

208 B. Cui, L. Kari, and S. Seki

words except w. Since parallel insertion of a word into another word certainly
generates a singleton, it is the parallel deletion that creates such words. We
initiate our investigation on this problem with a more general question: under
what conditions, parallel deletion results in a singleton.

Note that w ⇒ u = ∅ if and only if w does not contain u as its infix. In the
following, we only consider cases where w contains u as its infix. Also, note that
two occurrences of u in w have to overlap in a nontrivial manner for w ⇒ u
not to be a singleton. If u is unbordered, two occurrences of u never overlap
non-trivially regardless of what w is. Thus we have the following proposition.

Proposition 1. If u ∈ Σ∗ is unbordered, then w ⇒ u is a singleton for any
word w ∈ Σ∗ that contains u as its infix.

This also suggests that, even for a bordered word u, w ⇒ u is at most a singleton
as long as the form of w guarantees that nontrivial overlaps between u’s do not
occur in it. We will give a necessary and sufficient condition for w ⇒ u to be a
singleton in the case when w and u share the same primitive root.

Proposition 2. For a ∈ Σ, let w = aj and u = ak for some j ≥ k ≥ 1. Then
w ⇒ u is a singleton if and only if either k = 1, k ≤ j ≤ 2k − 1, or j = 3k − 1.

Proof. We consider the if-direction first. If k = 1, then this operation results in
a singleton of the empty word. If j < k, then we cannot delete any u from w so
that w ⇒ u = {w}. If k ≤ j ≤ 2k− 1, then by the definition of parallel deletion,
the operation deletes exactly one u from w, and hence w ⇒ u = {aj−k}. In
the case when j = 3k − 1, we let w = ai1akai2 for some 0 ≤ i1 < k. Then
k ≤ i2 ≤ 2k − 1. We know that ai2 ⇒ u = {ai2−k}. Hence w ⇒ u is a singleton.

On the other hand, we show that if k and j do not satisfy these conditions,
then w ⇒ u contains at least two elements. If 2k ≤ j ≤ 3k − 2, then it is clear
that we can delete two u’s from w. In addition, we can write w as ak−1akaj−2k−1.
Since j − 2k− 1 < k, ak−1aj−2k−1 is also included in w ⇒ u. In the case 3k ≤ j,
note that (a2k ⇒ u)(aj−2k ⇒ u) ⊆ w ⇒ u. We know that (a2k ⇒ u) is not a
singleton, and hence w ⇒ u cannot be a singleton. ��
Since a primitive word cannot be a proper infix of its square [17], this proposition
has the following corollary.

Corollary 1. Let w = gj and u = gk for some primitive word g and j ≥ k ≥ 1.
Then w ⇒ u is a singleton if and only if either k = 1, k ≤ j ≤ 2k, or j = 3k−1.

Next we consider the more general case when w and u may have distinct primitive
roots. If the primitive root of u is unbordered, then we can give a condition
similar to the one given in Proposition 2. The proof for this proposition works
to prove the next proposition.

Proposition 3. Let w ∈ Σ∗ and u = gk for some unbordered primitive word g
and k ≥ 1. If the following condition holds, then w ⇒ u is a singleton.
(Condition) whenever w = wpg

jws for some wp, ws ∈ Σ∗ with g �∈ Suff(wp) and
g �∈ Pref(ws), and j ≥ 1, either k = 1, k ≤ j ≤ 2k − 1, or j = 3k − 1.

On the Reversibility of Parallel Insertion 209

Now we consider the main problem of finding conditions for (L1 ⇐ L2) ⇒ L2

to be equal to L1. We start our investigation of this problem with the special
case when L1 = {w} and L2 = {u}. Hence our first aim is to clarify when
(w ⇐ u) ⇒ u does not contain any word other than w. If either w or u is the
empty word, then (w ⇐ u) ⇒ u is always {w}. Therefore in the remainder of
this paper we will assume, without loss of generality, that u and w are nonempty.
Let w = a1a2 · · ·an for some n ≥ 1 and a1, . . . , an ∈ Σ. In order for the parallel
deletion to create another word besides w, there must exist at least two different
ways to parallel-delete the occurrences of u from w ⇐ u. In other words, we
have to delete some occurrences of u that have not been parallel-inserted into w.
Formally speaking, u has to be a proper infix of uaiu for some 1 ≤ i ≤ n. Based
on this idea, we define the set:

X =
{
u ∈ Σ+ | prefx(u) �= suffx(u) or prefy(u) �= suffy(u)

for any (x, y) ∈ N2 with x + y + 1 = |u|}.

Informally, X contains words u which cannot be proper infixes of ubu for any
letter b ∈ Σ. For such words u ∈ X , there cannot exist two different ways to
parallel-delete the occurrences of u from w ⇐ u, and hence we have the following
result.

Proposition 4. If u ∈ X, then (w ⇐ u) ⇒ u = {w} for any w ∈ Σ∗.

In the following, we give a characterization of X . First of all, no unary word
can be in X . By the informal definition of X , the set of all unbordered words
of length at least 2, denoted by U>1, is a subset of X . Let N(>1) denote the
set of all non-primitive words whose primitive root is of length at least 2. The
next result shows that no word u in N(>1) can be a proper infix of ubu, for any
b ∈ Σ.

Lemma 2. N(>1) ⊆ X.

Proof. Suppose that there were u ∈ N(>1) such that u �∈ X . Let u = gi for some
primitive word g of length at least 2 and i > 1. Also we can let u = usaup for
some us ∈ Suff(u), a ∈ Σ, and up ∈ Pref(u). The equation gi = usaup implies
that this a is inside one and only one of these g’s. Since g2 cannot overlap with g
in any nontrivial way, either us or up is a power of g. We only consider the case
when us = gj for some j ≥ 1; the other can be proved in a similar way. Then
aup = gi−j . Since up ∈ Pref(gi), this means g is a power of a, a contradiction
with the primitivity of g. ��
Let QB be the set of all bordered primitive words. Any word in QB can be
written as w = (αβ)kα for some primitive word αβ, and k ≥ 1. We partition
QB into two sets. The first one, Q

(=1)
B , denotes the set of all bordered primitive

words w that can be written as (αβ)kα with |β| = 1. The second one is simply
the complement, Q

(>1)
B = QB \ Q

(=1)
B . For example, aaabaa, abbabba ∈ Q

(>1)
B

while aabaabaa ∈ Q
(=1)
B . This is because even though we can regard aabaabaa

as αβα with α = a and β = abaaba, we can also consider it as (α′β′)2α′, where
α′ = aa and β′ = b.

210 B. Cui, L. Kari, and S. Seki

The next result shows that every bordered primitive word w that can only be
written as (αβ)kα such that αβ is primitive, k ≥ 1, and |β| cannot be 1, cannot
be a proper infix of waw for any a ∈ Σ. Formally, we have

Lemma 3. Q
(>1)
B ⊆ X.

Proof. Suppose that there exists u ∈ Q
(>1)
B but u �∈ X . This means that u =

usaup for some us ∈ Suff(u) and up ∈ Pref(u) and a, b ∈ Σ such that u = upbus.
The Parikh vector of a word contains the occurrences of each letter in Σ. Since
the Parikh vectors of up and us together contain the same number of occurrences
of each letter in usaup and upbus, we can obtain a = b and hence u = upaus.
Due to a well known result mentioned in Sect. 2, there exist α, β ∈ Σ∗ such that
usa = (αβ)i and up = α(βα)j for some i ≥ 1 and j ≥ 0 and βα is primitive.
Then ua = upausa = upa(αβ)i = α(βα)i+ja, and hence the suffix of length
|αβ| + 1 of ua is bαβ = βαa. Again, based on the Parikh vector of this suffix,
b = a, i.e., aαβ = βαa. Note that |β| ≥ 2 because u ∈ Q

(>1)
B and hence a is

a proper suffix of β. Therefore, this equation means that βα overlaps with its
square in a nontrivial way, a contradiction with its primitivity. ��
The next result states that any word w that is either a unary word or a bordered
primitive word that can be written as (αβ)kα with αβ being primitive, k ≥ 1,
and |β| = 1, can be a proper infix of waw for some a ∈ Σ.

Lemma 4.
(
Q

(=1)
B ∪ {ai | a ∈ Σ, i ≥ 1}) ∩ X = ∅.

Proof. As mentioned above, any unary word cannot be in X . Let w ∈ Q
(=1)
B . By

definition, there exist α ∈ Σ+ and b ∈ Σ such that αb is primitive
and w = (αb)kα for some k ≥ 1. Then w is a proper infix of wbw, and hence
w �∈ X . ��
The next proposition characterizes the set of all words u that cannot be a proper
infix of uau for any a ∈ Σ, as being either unbordered words of length greater
than 1, or bordered primitive words of the form (αβ)kα such that αβ is primitive,
k ≥ 1, and |β| cannot be 1, or non-primitive words whose primitive root has
length longer than 1.

Proposition 5. X = U>1 ∪ Q
(>1)
B ∪ N(>1).

Proof. Note that Σ+ = U>1 ∪ QB ∪ N(>1) ∪ {ai | a ∈ Σ, i ≥ 1}. Combining
Lemmas 2, 3, and 4 together, we can reach this proposition. ��
As mentioned in Proposition 4, u being an element of X is sufficient for it to
satisfy (w ⇐ u) ⇒ u = {w} for any word w. In the following, we give necessary
and sufficient conditions for the equality to be true in the case when u �∈ X , that
is, either u is unary or u ∈ Q

(=1)
B .

Proposition 6. Let w ∈ Σ∗ and u = ak for some a ∈ Σ and k ≥ 1. Then
(w ⇐ u) ⇒ u = {w} if and only if

On the Reversibility of Parallel Insertion 211

1. if k = 2, then aa �∈ F(w);
2. otherwise, w ∈ (Σ \ {a})∗.

Proof. If w contains aa as its infix, then a3k+2 ∈ F(w ⇐ u). Proposition 3
implies that (w ⇐ u) ⇒ u is not a singleton. Next we consider the case when
w contains no aa but a as its infix, and k = 2. Then a5 ∈ F(w ⇐ u). Since
5 = 3k − 1, (w ⇐ u) ⇒ u is a singleton due to the proposition. It is clear that
for w ∈ (Σ \ {a})∗, (w ⇐ u) ⇒ u = {w}. ��

Having considered the case of u being unary, now the only one remaining case is
when u is an element of Q

(=1)
B . For such a word u, there exist α ∈ Σ+, b ∈ Σ, and

k ≥ 1 such that u = (αb)kα. We define Mu = {a ∈ Σ | u ∈ Suff(u)aPref(u)}.
By definition, Mu �= ∅ if and only if u �∈ X .

Lemma 5. For a bordered primitive word u, if b ∈ Mu, then there exists a
nonempty word α ∈ Σ+ such that u = α(bα)k for some k ≥ 1 and αb is primitive.

Proof. Since b ∈ Mu, u = upbus = usbup for some up, us ∈ Σ∗. Then usb = (αβ)i

and up = α(βα)j for some i ≥ 1, j ≥ 0, and α, β ∈ Σ∗ such that αβ is primitive.
Suppose that α were empty. Then u = βi+j . On one hand, i + j has to be 1
because u is primitive; on the other hand, i+ j ≥ 2 because up cannot be empty,
otherwise, u is a unary word over b longer than 2. Thus, α is nonempty. So
ub = upbusb = α(βα)i+jb, and hence b(αβ)i = (βα)ib. Since αβ is primitive, β
has to be of length 1, and hence β = b. ��

Lemma 6. For u ∈ Q
(=1)
B , |Mu| = 1.

Proof. Suppose |Mu| > 1, say two distinct characters b, d are in Mu. Then Lemma
5 implies that u = α(bα)i = γ(dγ)j for some i, j > 0 and α, γ ∈ Σ∗ such that both
αb and γd are primitive. Without loss of generality, we assume |αb| > |γd|. Then
by Fine-and-Wilf’s theorem [12], i = 1. Hence u = αbα = γ(dγ)j . If j is odd,
then clearly b = d, a contradiction. Otherwise, α = (γd)j/2γp = γs(dγ)j/2 and
γ = γpbγs for some γp, γs ∈ Σ∗ of same length. Then we have (γd)j/2−1γdγp =
γs(dγ)j/2−1dγpbγs, and hence b = d, the same contradiction. ��

Proposition 7. Let u ∈ Q
(=1)
B . Then (w ⇐ u) ⇒ u = {w} for w ∈ Σ+ if and

only if w ∈ (Σ \ Mu)+.

Proof. If w does not contain any letter in Mu, then it is clear that (w ⇐ u) ⇒
u = {w}.

We prove the converse implication. Due to Lemmas 5 and 6, Mu = {b} and
there exists α ∈ Σ+ such that u = α(bα)k for some k ≥ 1 and αb is primitive.
Let w = a1 · · · an for some n ≥ 1 and ai ∈ Σ for all 1 ≤ i ≤ n, and assume that
w contains b. Then we can find an integer 1 ≤ m ≤ n such that am−1 �= b (if
any), am = · · · = am+j−2 = b, and am+j−1 �= b (if any) for some j ≥ 2. Now

w ⇐ u = ua1 · · ·uam−1[α(bα)kbα(bα)kb · · · bα(bα)k]am+j−1u · · ·anu.

212 B. Cui, L. Kari, and S. Seki

We can parallel-delete u’s from the bracketed infix in two ways: one is to delete
j u’s that were actually inserted by the preceding insertion; the other is to
leave the first αβ and delete u from every (k + 1)|αβ| position. Note that in
the latter way, we delete exactly j − 1 u’s. If in both cases, we parallel-delete
the inserted u’s from the prefix and suffix, then we obtain two distinct words
w, a1 · · · am−1αbbj−2(bα)kam+j−1 · · ·an. We still need to check that the latter
parallel deletion is valid. For that, it is enough to check that neither am−1αb
or (bα)kam+j−1 contain u. Their lengths are at most |u| so that if one of them
contains u, then it is u itself. However, this is not the case because of the prim-
itivity of αb and α �= λ. ��
Since

u ∈ Σ+ = N(>1) ∪ {aa+| a ∈ Σ}
︸ ︷︷ ︸

non-primitive

∪Σ ∪ U>1 ∪ Q
(=1)
B ∪ Q

(>1)
B︸ ︷︷ ︸

primitive

,

Propositions 4, 5, 6, 7 completely characterize the solutions to the equation
(w ⇐ u) ⇒ u = {w}.

Hence now we are ready to consider the more general equation (L1 ⇐ L2) ⇒
L2 = L1. When L2 is a singleton, say L2 = {u}, the set X plays an important
role.

Proposition 8. If u ∈ X, then (L ⇐ u) ⇒ u = L for any language L ⊆ Σ∗.

Proof. By definition, (L ⇐ u) ⇒ u =
⋃

w∈L(w ⇐ u) ⇒ u. Then this result is
immediate from Proposition 4. ��

4 Comma Codes

In the previous section, we saw that if u ∈ X , then (L ⇐ u) ⇒ u = L for
any language L ⊆ Σ∗. The aim of this section is to introduce a new language
family with the property that if a language L2 belongs to this family, then
(L1 ⇐ L2) ⇒ L2 = L1 holds for any language L1 ⊆ Σ∗.

Definition 1. A set L ⊆ Σ+ is called a comma code if LΣL ∩ Σ+LΣ+ = ∅.
Intuitively, a comma code is a set L with the property that none of its words
can be a proper infix of u1au2 where u1 and u2 are words in L, and a ∈ Σ is a
“comma”. As it turns out (Corollary 2) a comma code is indeed a code.

As examples, L = {abka | k > 1} is a comma code, while any language that
contains unary words or words in Q

(=1)
B is not a comma code.

Theorem 2. If the language L2 ⊆ Σ+ is a comma code, the equation
(L1 ⇐ L2) ⇒ L2 = L1 holds for any language L1 ⊆ Σ∗.

The definition of comma codes reminds us of that of comma-free codes. A
nonempty set L ⊆ Σ+ is a comma-free code if L2 ∩ Σ+LΣ+ = ∅. Recall that a
nonempty set L ⊆ Σ+ is an infix code if L ∩ (Σ∗LΣ+ ∪ Σ+LΣ∗) = ∅, and that
a comma-free code is an infix code [17]. We establish a relationship among these
three codes, which leads us to the fact that comma codes are actually codes.

On the Reversibility of Parallel Insertion 213

Lemma 7. For a language A ⊆ Σ∗, A is a comma code if and only if AΣ is a
comma-free code.

Proof

(If) We assume that AΣ is a comma-free code, and suppose that A were not a
comma code. Then there exist w1, w2, w3 ∈ A, a ∈ Σ, and x, y ∈ Σ+ such that
w1aw2 = xw3y. By putting some b ∈ Σ at the ends of both sides, we can reach
a contradiction with AΣ being a comma-free code.

(Only-if) Suppose that AΣ were not a comma-free code. Then we have
u1a1u2a2 = x′u3a3y

′ for some u1, u2, u3 ∈ A, a1, a2, a3 ∈ Σ, and x′, y′ ∈ Σ+.
Since y′ is nonempty, we can cut the rightmost letters of both sides from this
equation, and reaches the contradiction. ��
Lemma 8. For a language A ⊆ Σ∗, A is an infix code if and only if AΣ is an
infix code.

Proof. The only-if direction is trivial because the family of infix codes is closed
under concatenation. As of the if direction, under the assumption that AΣ is
an infix code, suppose that A were not. Then there exist u ∈ A and x, y ∈ Σ∗

such that xuy ∈ A and xy �= λ. Then for any b ∈ Σ, xuyb ∈ AΣ, which contains
uc ∈ AΣ as its factor, where c is a first letter of yb. Since uc �= xuyb, this is a
contradiction. ��
Corollary 2. A comma code is an infix code, and hence a code.

Actually, the family of comma codes is a proper subset of the family of infix codes.
For example, L = {ab, ba} is an infix code, but not a comma code. Hence we
give a characterization of infix codes which are comma codes. For this purpose,
we define the following terms:

Lp = {x ∈ Σ+ | xy, yz ∈ L for some y, z ∈ Σ+},
Li = {y ∈ Σ+ | xy, yz ∈ L for some x, z ∈ Σ+},
Ls = {z ∈ Σ+ | xy, yz ∈ L for some x, y ∈ Σ+},
Lp = {x ∈ Σ+ | xa ∈ Lp for some a ∈ Σ},
Ls = {x ∈ Σ+ | ax ∈ Ls for some a ∈ Σ}.

Proposition 9 ([16]). Let L ⊆ Σ+. If L is an infix code, then the following
four conditions are equivalent and make L a comma-free code: (1) Ls ∩ Li = ∅,
(2) Lp ∩ Li = ∅, (3) L ∩ LsLs = ∅, and (4) L ∩ LpLp = ∅. Conversely, if L is a
comma-free code, then L is an infix code with these properties.

Proposition 10. Let L ⊆ Σ+. If L is an infix code such that L ∩ Σ = ∅ and
(Ls ∪ Lp) ∩ Σ = ∅, then the following four conditions are equivalent and make
L a comma code: (1) Ls ∩ Li = ∅, (2) Lp ∩ Li = ∅, (3) L ∩ LsLs = ∅, and (4)
L ∩ LpLp = ∅. Conversely, if L is a comma code, then L is an infix code with
these properties.

214 B. Cui, L. Kari, and S. Seki

Proof. Note that the emptiness of L ∩ Σ and (Ls ∪ Lp) ∩ Σ is the minimal
requirement for L to be a comma code.

(Only-if) Lemma 7 implies that LΣ and ΣL are comma-free codes. Using
Proposition 9, we have the four properties: (a) (LΣ)s ∩ (LΣ)i = ∅, (b) (ΣL)p ∩
(ΣL)i = ∅, (c) LΣ ∩ (LΣ)s(LΣ)s = ∅, and (d) ΣL∩ (ΣL)p(ΣL)p = ∅. Suppose
that there were u ∈ Ls ∩ Li. Then there exist x, y, z, w ∈ Σ+ and a ∈ Σ such
that xy, yau, zu, uw ∈ L. Let w = bw′ for some w′ ∈ Σ∗. Then xya, yaub ∈ LΣ
and hence ub ∈ (LΣ)s. Moreover, zub, ubw′c ∈ LΣ for any c ∈ Σ, and hence
ub ∈ (LΣ)i. These two results cause a contradiction with the property (a). The
2nd one derives from the property (b) in the same manner. Next we prove the 3rd
property from (c). Suppose that L∩LsLs �= ∅. Then there exist x, y, z, w, u, v ∈
Σ+ and a ∈ Σ such that xy, yau, zw, wv ∈ L and uv ∈ L. Let v = bv′ for some
v′ ∈ Σ∗. Then xya, yaub, zwb, wbv′c ∈ L for any c ∈ Σ. Thus, ub, v′c ∈ (LΣ)s

and ubv′c ∈ LΣ, a contradiction. The 4th derives from the property (d) in this
way.

(If) Suppose L were not a comma code. Then there exist u, v, w ∈ L, x, y ∈ Σ+,
and a ∈ Σ such that uav = xwy. Since L ∩ Σ = ∅, (Ls ∪ Lp) ∩ Σ = ∅, and L
is an infix code, u = xα, v = βy, and w = αaβ for some α, β ∈ Σ+. Therefore,
β ∈ Ls ∩ Li, α ∈ Lp ∩ Li, βy ∈ L∩ ∈ LsLs, and xα ∈ L∩ ∈ LpL

p
. These

contradict the properties 1-4. ��
Example 3. Let L1 = {aba, abba}. While this is a comma-free code, abababa ∈
LΣL ∩ Σ+LΣ+ and hence L1 is not a comma code. On the other hand, let us
consider L2 = {aaab, abab}. This is a comma code but not a comma-free code
because any element of comma-free codes has to be primitive [17]. Moreover,
there is a language which is both a comma and comma-free code. An example
is L3 = {abba, abbba}.
This example is enough to verify the following result.

Proposition 11. The family of comma codes and the family of comma-free
codes are incomparable, but not disjoint.

Another important subfamily of infix codes is the family of solid codes. A
nonempty set L ⊆ Σ+ is called a solid code if L is an infix code and Pref(L) ∩
Suff(L)∩Σ+ = ∅. This is a strict requirement. In fact, if L is a solid code, then
all of Li, Ls, Lp, Ls, and Lp are empty. Thus, the following is a corollary of
Proposition 10.

Corollary 3. Let L be a solid code. If L ∩ Σ = ∅, then L is a comma code.

Since there exists a solid code all of whose elements are of length at least 2, this
corollary clarifies that the family of solid codes and that of comma codes are
not disjoint. However, these two families are incomparable as shown in the next
example.

Example 4. Let L1 = {ab, c}. This is a solid code, but not a comma code because
it contains a word of length 1. On the other hand, L2 in Example 3 provides an
example of a comma code which is not a solid code.

On the Reversibility of Parallel Insertion 215

Proposition 12. The family of comma codes and the family of solid codes are
incomparable.

Next we consider the closure properties of comma codes under certain operations.
For alphabets Σ1, Σ2, let f : Σ∗

1 → Σ∗
2 be a homomorphism. Then the inverse

homomorphism f−1 : Σ∗
2 → 2Σ∗

1 is defined as: for u ∈ Σ∗
2 , f−1(u) = {v ∈ Σ∗

1 |
f(v) = u}.
Proposition 13. The family of comma codes is not closed under union, cate-
nation, +, complement, non-erasing homomorphism, and inverse non-erasing
homomorphism. On the contrary, it is closed under reversal and intersection
with an arbitrary set.

Proof. The union of comma codes {ab} and {ba} is not a comma code. The
catenation AB of comma codes A = {aaba} and B = {abaa} is not so because
(aaba)(abaa)b(aaba)(abaa) contains (aaba)(abaa) as a proper infix. For a comma
code L = {abab}, ababababaabab ∈ L+ΣL+∩Σ+L+Σ+. Thus L+ is not a comma
code. The complement of a comma code {ab} contains a word of length 1 and
hence not a comma code. Consider alphabets Σ1 = {a, b} and Σ2 = {a}, and
let f : Σ∗

1 → Σ∗
2 be a non-erasing homomorphism defined as f(a) = f(b) = a.

Then f maps a comma code {aaab, abab} onto {aaaa}, which is not a comma
code. Consider alphabets Σ3 = {a} and Σ4 = {a, b}, and let g : Σ∗

3 → Σ∗
4

be a homomorphism defined as g(a) = ab. Since L = {abab} is a comma code
but g−1(L) = {aa} is not, the class of comma codes is not closed under inverse
non-erasing homomorphisms.

By definition, it is clear that the family of comma codes is closed under reversal
or intersection with an arbitrary set. ��

Proposition 13 says that the catenation of two comma codes is not always a
comma code. So we investigate a condition under which a catenation of two
languages A and B becomes a comma code under the assumption that A∪B is
an infix code. Under this assumption, an element of AB can be a proper infix
of an element of ABΣAB only in two ways as shown in Fig. 2. The following
results offer additional conditions on A and B, which make AB a comma code
by preventing both cases in Fig. 2 from occurring.

Proposition 14. Let A, B ⊆ Σ∗ such that A ∪ B �= ∅. If A ∪ B is either a
comma code or a comma-free code, then AB is a comma code.

Proof. Suppose that AB were not a comma code. Then there exist u1, u2, u3 ∈ A,
v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some r, s ∈ Σ+.
Since comma-free codes and comma codes are infix codes, then A∪B is an infix
code. Thus, we have the two cases shown in Fig. 2. Nevertheless, they cause a
contradiction with A ∪ B being a comma or comma-free code. ��

Proposition 15. Let A, B ⊆ Σ∗ such that A ∩ B = ∅ and A ∪ B is an infix
code. If As ∩ Bp = ∅, then AB is a comma code.

216 B. Cui, L. Kari, and S. Seki

x′ x y z z′

z′ z x y y′

Case 1

Case 2

u1 v1 a u2 v2

u3 v3

u1 v1 a u2 v2

u3 v3

Fig. 2. For u1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A ∪ B is an infix code, u3v3 can be a
proper infix of u1v1au2v2 only in these two ways. Note that x′ and y in Case 1 can be
empty at the same time, and x and y′ in Case 2 can be empty at the same time.

Proof. Suppose that AB were not a comma code. Then there exist u1, u2, u3 ∈ A,
v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some r, s ∈ Σ+. Since
A ∪ B is an infix code and A ∩ B = ∅, we have only two cases: (1) u3 = x′x,
v1 = xy, v3 = yaz, and u2 = zz′, or (2) v1 = z′z, u3 = zax, u2 = xy, and
v3 = yy′ for some x′, x, y, z ∈ Σ+ and a ∈ Σ. Then x in case (1) or y in case (2)
is in As ∩ Bp, a contradiction. ��
Note that the condition in the above proposition is also the condition for AB
to be a comma-free code [16]. Therefore, if A and B are two disjoint languages
such that A∪B is an infix code and As ∩Bp = ∅, then AB is in the intersection
of the family of comma codes and that of comma-free codes.

5 Comma Intercodes

In coding theory, the notion of comma-free code was extended to the more general
one of intercode. For m ≥ 1, a nonempty set L ⊆ Σ+ is called an intercode of
index m if Lm+1 ∩ Σ+LmΣ+ = ∅. An intercode of index 1 is a comma-free
code. Based on the similarity between the definition of comma code and that
of comma-free code, we introduce the comma intercode as a generalization of
comma code.

For m ≥ 1, a nonempty set L ⊆ Σ+ is called a comma intercode of index m
if (LΣ)mL ∩ Σ+(LΣ)m−1LΣ+ = ∅. It is immediate that a comma intercode of
index 1 is a comma code. A language L is called a comma intercode if there exists
an integer m ≥ 1 such that L is a comma intercode of index m. First of all, we
have to prove that a comma intercode is actually a code. A nonempty set L ⊆ Σ+

is a bifix code if L ∩ LΣ+ = ∅ (prefix code) and L ∩ Σ+L = ∅ (suffix code).

Proposition 16. A comma intercode is a bifix code.

Proof. Let L be a comma intercode of index m for some m ≥ 1. Suppose
that L were not a prefix code. Then we have u, w ∈ L such that w = uv for
some v ∈ Σ+. This implies that for some a1, . . . , am ∈ Σ, wa1wa2 · · · amw =
wa1(wa2 · · ·amu)v ∈ Σ+(LΣ)m−1LΣ+, which contradicts that L is a comma
intercode. In the same way, we can prove that L must be a suffix code. Thus, L
is a bifix code. ��

On the Reversibility of Parallel Insertion 217

Like comma codes, a comma intercode consists of only non-unary words of length
at least 2. From now, we introduce several properties of comma intercodes.

Proposition 17. Let L be a regular language. Then for a given integer m ≥ 1,
it is decidable whether or not L is a comma intercode of index m.

Proof. Since the family of regular languages is closed under catenation and in-
tersection, (LΣ)mL∩Σ+(LΣ)m−1LΣ+ is regular. Hence it is decidable whether
this language is empty. ��
Proposition 18. Let L be a comma intercode of index m for some m ≥ 1. Then
L ⊆ X.

Proof. Suppose that there were w ∈ L but w �∈ X . Then w = wsawp for some
ws ∈ Suff(w), a ∈ Σ, and wp ∈ Pref(w). This implies that w = wpaws. Then
(wa)mw = wpa(wsawpa)m−1wsawpaws ∈ Σ+(LΣ)m−1LΣ+, a contradiction.

��
Proposition 19. For any m ≥ 1, every comma intercode of index m is a comma
intercode of index m + 1.

Proof. Let L be a comma intercode of index m. By definition, we have (LΣ)mL∩
Σ+(LΣ)m−1LΣ+ = ∅. Suppose that L were not a comma code of index m + 1.
Then (LΣ)m+1L ∩ Σ+(LΣ)mLΣ+ �= ∅. That is, there exist x1, . . . , xm+2 ∈
L, y1, . . . , ym+1 ∈ L, a1, . . . , am+1, b1, . . . , bm ∈ Σ, and u, v ∈ Σ+ such that
x1a1 · · ·am+1xm+2 = uy1b · · · bmym+1v. Because of L being a comma inter-
code of index m, |u| < |x1| and |v| < |xm+2| must hold. However, even so,
y1b1 · · · bmym+1 is in Σ+x2a2 · · ·amxm+1Σ

+, and hence (LΣ)mL∩Σ+(LΣ)m−1

LΣ+ �= ∅. This is a contradiction. ��
For any m ≥ 1, we denote the family of comma intercodes of index m by Im.
Proposition 19 implies that Im ⊆ Im+1 for any m ≥ 1. This inclusion is ac-
tually proper. Let {a, b} ⊆ Σ and ui = abia for some i ≥ 1. Then, for some
a1, . . . , am+1 ∈ Σ, L = {u1a1 · · ·um+1am+1um+2, u2, u3, . . . , um, um+1} satis-
fies the condition (LΣ)m+1L ∩ Σ+(LΣ)mLΣ+ = ∅, and hence L ∈ Im+1. On
the other hand, L �∈ Im. This is because a word u1a1 · · ·um+1am+1um+2 ∈
Σ+u2a2 · · ·um+1Σ

+.
Moreover, let Cb denote the family of bifix codes. Then {aba, abba} is in Cb

but not in Im for any m ≥ 1. Combining Proposition 19 with this example, we
have the following hierarchy, where ⊂ denotes proper inclusion.

Theorem 3. I1 ⊂ I2 ⊂ · · · ⊂ Im ⊂ · · · ⊂ Cb holds.

Let I ′m denote the family of intercodes of index m for any m ≥ 1. It is known that
I ′1 ⊂ I ′2 ⊂ · · · ⊂ I ′m ⊂ · · · ⊂ Cb holds [16]. Due to these results and Proposition
11, we obtain the following corollary.

Corollary 4. For any m, n ≥ 1, the family of intercodes of index m and the
family of comma intercode of index n are incomparable.

218 B. Cui, L. Kari, and S. Seki

Furthermore, we know that the family of comma-free codes and that of comma
codes are proper subsets of the family of infix codes. Thus, we can draw the
proper inclusion hierarchy of the families of bifix codes, intercodes, comma in-
tercodes, and infix codes as follows.

Bifix codes

Intercodes Comma intercodes

I ′
m+1 Im+1

I ′
m Im

I ′
1 (Comma-free codes) I1 (Comma codes)

Infix codes

Fig. 3. The inclusion hierarchy of bifix codes, intercodes, comma intercodes, and infix
codes, where arrows indicate proper inclusion

Although the definition and some properties of comma intercodes are similar
with those of intercodes, we show in the following that these two codes are
not similar in terms of synchronous decoding delay. A code L is synchronously
decipherable if there is a non-negative integer n such that for all u, v ∈ Σ∗ and
x ∈ Ln, uxv ∈ L∗ implies u, v ∈ L∗. If a code L is synchronously decipherable,
then the smallest such n is called the synchronous decoding delay of L. It is
known that, for a code L ⊆ Σ+, L is an intercode of index n if and only if L is
synchronously decipherable with delay less than or equal to n [17]. In contrast,
comma intercodes do not have such a property.

Proposition 20. Let L ⊆ Σ+ be a comma intercode of index n. Then L is not
necessarily synchronously decipherable with delay less than or equal to n.

Proof. Consider L = {abab, aaab}, which is a comma intercode of index 1, and
hence a comma code of any index. For m ≥ 1, aaab(abab)m = aa(abab)mab ∈
Lm+1 and (abab)m ∈ Lm but aa, ab �∈ L. Therefore, L is not with delay m. ��

6 Conclusion

In this paper, we obtained some properties of parallel insertion and deletion,
and investigated conditions for the equation (L1 ⇐ L2) ⇒ L2 = L1 to hold. We
obtained a complete characterization of solutions in the special case when L1 and
L2 are singleton languages. For the general case, we introduced the definition
of comma codes and proved that, if L2 is a comma code, then the equation
holds for any language L1 ⊆ Σ∗. We also obtained a characterization, some
closure properties, and algebraic properties of comma codes, and compared this
family of codes with the families of comma-free codes and solid codes. Lastly,
we generalized the notion of comma codes to that of comma intercodes of index
m. As it turns out, the families of comma intercodes of index m form an infinite
proper inclusion hierarchy within the family of bifix codes. The first element

On the Reversibility of Parallel Insertion 219

of this hierarchy, the family of comma codes, is a subset of the family of infix
codes, while the last element of which is a subset of the family of bifix codes. This
hierarchy parallels, but is different from, the one that starts with comma-free
codes (which are infix codes), and continues with intercodes of index m (which
are bifix codes).

Acknowledgement

The authors acknowledge the anonymous referees for their useful comments.

References

1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press. Inc., Orlando (1985)
2. Domaratzki, M.: Deletion along trajectories. Theoretical Computer Science 320,

293–313 (2004)
3. Ito, M., Kari, L., Thierrin, G.: Insertion and deletion closure of languages. Theo-

retical Computer Science 183, 3–19 (1997)
4. Jürgensen, H., Konstantinidis, S.: The hierarchy of codes. In: Ésik, Z. (ed.) FCT

1993. LNCS, vol. 710, pp. 50–68. Springer, Heidelberg (1993)
5. Kari, L.: On Insertion and Deletion in Formal Languages. Ph.D. Thesis, University

of Turku (1991)
6. Kari, L.: Insertion and deletion of words: determinism and reversibility. In: Havel,

I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 315–326. Springer,
Heidelberg (1992)

7. Kari, L., Thierrin, G.: Words insertions and primitivity. Utilitas Mathematica 53,
49–61 (1998)

8. Kari, L., Mateescu, A., Paun, G., Salomaa, A.: Deletion sets. Fundamenta Infor-
matica 18(1), 355–370 (1993)

9. Kari, L., Mateescu, A., Paun, G., Salomaa, A.: On parallel deletions applied to a
word. RAIRO. Theoret. Inform. Appl. 29, 129–144 (1995)

10. Kudlek, M., Mateescu, A.: On distributed catenation. Theoretical Computer Sci-
ence 180, 341–352 (1997)

11. Kudlek, M., Mateescu, A.: On mix operation. New Trends in Formal Languages. In:
Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218,
pp. 35–44. Springer, Heidelberg (1997)

12. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

13. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired
by the DNA hairpin formation: Completion and reduction. Theoretical Computer
Science 410, 417–425 (2009)

14. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic con-
straints. Theoretical Computer Science 197, 1–56 (1998)

15. Parikh, R.J.: On context-free languages. Journal of the Association for Computing
Machinery 13, 570–581 (1966)

16. Shyr, H.J.: Free Monoids and Languages. Lecture Notes, Institute of Applied Math-
ematics, National Chung-Hsing University, Taichung, Taiwan (2001)

17. Yu, S.S.: Languages and Codes. Lecture Notes, Department of Computer Science,
National Chung-Hsing University, Taichung, Taiwan 402 (2005)

18. Yu, S.S.: A characterization of intercodes. Intern. J. Computer Math. 36, 39–48
(1990)

	On the Reversibility of Parallel Insertion, and Its Relation to Comma Codes
	Introduction
	Preliminaries
	When Does $(L_1 \Leftarrow L_2) \Rightarrow L_2$ Equal L_1?
	Comma Codes
	Comma Intercodes
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

